

The facilities of Argonne National Laboratory are owned by the United States Govern-
ment, Under the terms of a contract (W-31-109-Eng-38) between the U. S, Atomic Energy
Commission, Argonne Universities Association and The University of Chicago, the University
employs the staff and operates the Laboratory in accordance with policies and programs formu-
lated, approved and reviewed by the Association. ’

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona Kansas State University The Ohio State University
Carnegie-Mellon University The University of Kansas Ohio University

Case Western Reserve University Loyola University The Pennsylvania State University
The University of Chicago Marquette University Purdue University

University of Cincinnati Michigan State University Saint Louis University

Illinois Institute of Technology The University of Michigan Southern Illinois University
University of Illinois University of Minnesota University of Texas

Indiana University University of Missouri Washington University

Iowa State University Northwestern University Wayne State University

The University of Iowa University of Notre Dame The University of Wisconsin

LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on behalf
of the Commission:

A. Makes any warranty or representation, expressed or implied, with re-
spect to the accuracy, completeness, or usefulness of the information contained
in this report, or that the use of any information, apparatus, method, or process
disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages re-
sulting from the use of any information, apparatus, method, or process disclosed
in this report.

As used in the above, "person acting on behalf of the Commission" in-
cludes any employee or contractor of the Commission, or employee of such
contractor, to the extent that such employee or contractor of the Commission,
or employee of such contractor prepares, disseminates, or provides access to,
any information pursuant to his employment or contract with the Commission,
or his employment with such contractor.

Printed in the United States of America
Available from
Clearinghouse for Federal Scientific and Technical Information
National Bureau of Standards, U. S. Dgpartment of Commerce
Springfield, Virginia 22151
Price: Printed Copy $3.00; Microfiche $0.65

ANIL=7599
Mathematics and Computers

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

C:READ, A Reentrant Routine to
Convert EBCDIC Decimal Numbers
to Hexadecimal

: oy

Conrad E. Thalmayer

Chemistry Division

August 1969

TABLE OF CONTENTS

Page

e e S e R R S R G SR 5
G s Ao e R RE R e S 5

L O AL B S S R R R e G e S Rt s 5
U, LR D b R O T A O e g RGeS e e 6
PN EXTERMATICORCANIZATION o . o owivdis oo alieenn o e s 7
IR NI ER AT ORCANEEATION o, L ot e b e o % bl et e 8
I e R ol T R R e R S 9
AT R ST DT bz b N S e e R e 5
RPPENIIE A s Blepr Charts oo ol widae m v it e 10
NI B S E g abiap S L e b R e e 19

C:READ, A Reentrant Routine to
Convert EBCDIC Decimal Numbers
to Hexadecimal

by

Conrad E. Thalmayer

ABSTRACT

This report describes a reentrant, general-purpose
routine for the Xerox Data Systems Sigma 5 or Sigma 7
computer with Floating-Point Option. C:READ converts
EBCDIC decimal numbers in their normal input forms to
hexadecimal numbers in the forms used in the computer.
The report explains the need for the routine, describes its
capabilities, presents all the informationnecessary for using
it, and outlines its structure. The flow charts and listing
are included.

PREFACE

This report describes a conversion routine for the Sigma 5iar
Sigma 7 computer with Floating-Point Option. It is written in graded format,
to be useful to readers of all levels of interest and sophistication. The
general reader, for example, may profitably read the first one or two sec-
tions; the casual programmer will want to understand the second and third
sections; only a programmer with special requirements will have need for
the details of the fourth section, the flow charts and the program listing.

This routine is independent of the computer operating system. It was
written in XDS SYMBOL in September 1968 and slightly amplified in April
and June 1969.

1. THE PROBLEM

In Sigma computers, numbers are hexadecimal. Let us represent the
hexadecimal digits, or "higits,” as 0, 1, 2, 3, 4, 5,6, 7,8,9, & B, D6,
and F and indicate a hexadecimal number by X'...". Then, for example, the
number X'lA' is equal to (1 - 16Y) + (10 - 16°) = 26. Normally, numbers are
of either word (8-higit) or doubleword (16-higit) length and either fixed
point or floating point. A fixed-point number, necessarily integral, is equal
to the sum of its higits, each successive higit leftward having been multiplied

by a successively higher power of 16; a floating-point number consists of a
two-higit exponent followed by a 6 (or 14)-higit fraction.

Outside computers, numbers are (1) normally decimal, (2) of variable
length, and (3) in various formats, e.g., signed or unsigned, with or without
point, with or without exponent. Furthermore, (4) they are presented to the
computer in EBCDIC (Extended Binary Coded Decimal Interchange Code); in
this code, each character is represented by a two-digit number; e.g., 'l' is
BepresentediasEXUENNEE 1 AR BT SISl E 5 i

For input to the computer, a routine is necessary to convert numbers
of the latter types into the former. The routine should be (1) rapid, (2) brief,
(3) versatile enough to satisfy the needs of all programs using it, (4) ame-
nable to convenient use in several ways, (5) capable of readily handling input
from each of the usual devices, and (6) able to recognize all user errors and
act appropriately. Most importantly, (7) the routine must be reentrant, i.e.,
while it is being used by a program of given priority, it must be interruptible
by one of higher priority and subsequently resumable at the point of inter -
ruption; there should be no limit to the number of programs that might thus
be sequentially interrupted while using the routine.

II. GENERAL

C:READ satisfies the above requirements. It accepts EBCDIC deci-
mal numbers of various lengths in I, D, E, or F format, signed or unsigned,
with or without leading or trailing blanks; it also accepts blank strings as
zeros. It converts to short (8-higit) fixed-point or long (16-higit) floating -
point numbers; the latter may be used as short numbers by ignoring the
eight low-order higits.

The seven additional requirements listed above are abetted by the
following: (1) This routine carries out only instructions pertinent to its
specific task. It does not employ subroutines. (2) The various tasks use
instructions of high commonality. (3) The number to be converted may be
at any location and in a variety of forms. The value 5, for example, may
appear as 5, 05, 5., +5, +05, +5., 5E0, .5E1, .5E+1, .5E I orst5(SUE=INEt e
mention just a few possibilities. If the specified "number" is blank, it is
interpreted as zero and the user is so informed. (4) The number may start
at the "starting byte count" specified by the user, or it may be preceded by
blanks. It may end at the specified "ending byte count" or at a blank; the
latter is frequently convenient in that it enables the user to convert a sub-
sequent number without change of specifications. (5) The routine itself
recognizes relevant special characters, such as "End-of-Message," thus
relieving the user from dealing with them. (6) The routine will reject a re-
quest if (a) a specification is illegal, (b) the number is too large or small,
(c) the mantissa is too long, (d) a character is invalid, or (e) a sequence is

invalid, e.g., .+, 5+, E., or ++. The user is informed of the reason for the
rejection. (7) The vital requirement of reentrancy is attained by carrying
out all operations in the computer's registers. Upon interruption of a
program, the contents of these registers and the address of the interruption
are stored in that program's Program Description Table (PDT); upon return
to the program, the registers are restored and execution is resumed at the
interrupted instruction. This technique relieves the user of supplying some
of his working space to the routine. Inasmuch as probably every real-time
program will use this routine, this will result in a major saving of core
space.

III. EXTERNAL ORGANIZATION

C:READ has two entry points: DECLREAD for conversion to floating
point, and INTGREAD for conversion to fixed point. All exitpoints branch to
the address given by the user in Register 0. The word address of the input
field is given in R1, the starting byte count in that field in R2, and the ending
byte count in R3. (Bytes are counteduOinl, 2,5)it hefendiof the mumben
may also be indicated prior to the ending byte count by a blank (except after
D or E) or by the EOM character. As each byte (i.e., EBCDIC character) is
treated, R2 is incremented by 1; it is therefore possible for the user to have
several numbers, separated by blanks, in the one field; the user needs to set R2
at only his first entry to the routine - -at each subsequent entry, R2 will
already contain the correct starting byte count. If the user tries to read
more numbers out of his field than it contains, or if he reads a portion of the
field that is blank, the value 0 is returned and R6 is set to 0; reading an
actual 0, or any other number, causes a 1 in R6. The routine returns the
converted fixed-point number in R5 or the converted floating-point number
in R4 and R5. Registers 7, 8, 9, 10, and 11 are also used; the remaining
four registers are available to the user. This utilization of registers may
be summarized as follows:

Input:
RO User's return address
R1 Field Address
R2 Starting byte count
R3 Ending byte count
Output:
R2 Next byte count
R4,5 Number from DECLREAD
R5 Number from INTGREAD
R6 0 if pseudo 0 was read

This routine accepts input in a liberalized FORTRAN format. The
given number may contain a mantissa, an exponent, or both; in the absence

of a mantissa, the value 1 is supplied. The beginning of the exponent field

is indicated by either D or E. (Neither character carriesany other impli-

cation.) The number may be preceded or followed by any number of blanks;
a blank is also permitted immediately after D or E. The first character of
the number, and the first character after D or E,may be + or -. If a man-

tissa is given, it may contain a decimal point. Leading zeros are permitted
in both the mantissa and the exponent.

The largest number acceptable for INTGREAD is 2,147,483,640. The
largest mantissa for DECLREAD is 72,057,594,037,927,935. The largest
number for DECLREAD is 7.2370E75. The smallest number for DECLREAD
1S BRSO B =792

If the user's input is valid, the number is converted and the Condition
Code is set to 0. If the input is not valid, the routine aborts to the address in
RO and the Condition Code is set to a value between 1 and 7, as follows:

Invalid format in mantissa
Invalid character in mantissa
Mantissa too long

Invalid format in exponent
Invalid character in exponent
Number too small

Number too large

~N O U W N

IV. INTERNAL ORGANIZATION

C:READ has three parts: (1) mantissa evaluation, (2) exponent eval-
uation, and (3) number development. In Part 1, the first digit of the mantissa
is evaluated, multiplied by 10, the second digit added, the RESULT multiplied
by 10, etc. In Part 2, the same is done with the exponent. In Part 3, the
exponent is reduced by the number of multiplications to the right of the
decimal point in Part 1, and RESULT is multiplied (or divided) by 10 that
many times. In the first two parts, each byte is interpreted completely
before the next byte is examined.

In Part 1, the first byte is first checked for identity to blank, EOM,
da= D o sl BB lanik, in this situation, has no effect. EOM indicates the
end of the number,now 0, and causesa transfer to Part 3. D or E causes

a transfer to Part 2. Reading +, -, or . causes values in certain locations,

actually registers, to be changed; these values will control the interpretation
of subsequent bytes and are used in the final development. For example,
reading - causes the assignments PASS = ~1 and MSIGN = ~Ig P ASSA=E=1]

causes abortion if this is the end of the number; MSIGN = -1 prevents the

acceptance of a subsequent + or - and, at the very end of the routine, causes
complementation of RESULT.

Each byte, when it has been checked as just suggested, and not
matched, is checked for identity to the digits. If this match fails, the routine
aborts. If it succeeds, the value of the byte has been generated in the double -
word DIGIT. For the next stage, the routine diverges: if entry was at
INTGREAD, RESULT is simply multiplied by 10 and DIGIT is added; if entry
was at DECLREAD, as now shown by a flag set at entry, the same effect is
accomplished by a complex series of operations on the doubleword RESULT.
If the current digit was at some time preceded by ., DEC < 1 and is now
decremented by 1. Finally, in this part, MSIGN is set to +1 if no mantissa
sign was read, and PASS is set to +1 to permit normal exit if this is the end
of the number.

In Part 2, a series of preliminary tests is first made to checkvalidity,
and the mantissa is set to 1 if it did not exist. Each byte is then interpreted,
somewhat as in the first part. The first byte may be +, -, blank, or a digit.
The result of this part is the fixed-point quantity EXP.

In Part 3, the quantity DEC, if it is negative, is added to BXE. . Inithe
remainder of the routine, separate paths are followed for the two types of
number. For DECLREAD, RESULT is first converted to floating point; it is
then multiplied EXP number of times by 10 if EXP is positive, or divided
if EXP is negative. For INTGREAD, RESULT is multiplied or divided by 10
the required number of times in fixed -point mode.

SUMMARY
C:READ is a routine to convert decimal numbers in their normal
input forms to hexadecimal numbers in the forms used in the computer.
The routine is reentrant, general-purpose, convenient, accurate, economical,
and fail-safe.

ACKNOW LEDGMENTS

I am grateful to Paul Day for his suggestion of the approach to the
problem, and to Henry Krejci for his help in coding.

APPENDIX A
Flow Charts Charts

SCAN1
DECLREARD

FLAG =+
RESULT1 RESULTI

BYTECNT
ENDCNT

1
PART3 READ1

yﬂ

SCAN1 PARTZ | | DECODE

11

12

N

10— DIGITZ2

DIGITZ - 1

FURL FLAG
RESULT1 # 10

| FURL

[RESULT

MULT1 MULTZ

N

[REsuLT2 * 10 |
[RESULT +: RESULT1]
[RESULT l+ DIGIT |
[_FLAG th:suuu

[ResuLTE » 10|
1
[RESULT + DIGIT |

13

14

+1-—» ESIGN

READZ

\
31— ESIGN] [-1— ESIGN

»* 10

EXP
[EXP_+ DIGIT]
' [I-— PASS |

v

N

+1— ESIGN
()

15

16

Y

EXP

N

FURL FLAG

ADD BIAS
NORMALIZE

RESULT
> LIMIT

[RESULT ~ 10 7 » 10

[MAKE _RESULT - |

18

RESULT # .1

RESULT % 10

EXXEE
S
¥

*

‘ll“*lﬁil{iliﬁilﬂ.’i’ﬁ!*{ii&lii’h!l’i’.

FTABU

1TABU
HIGHB
BITOF

ILIMI
DECTB
BIAS

FPONE
FTEN

LLIMI
uLIMI

19

APPENDIX B

Listing
‘ttt#ttt#tt#ttttttttttttt#tttttttttt##t#t*##ttt##tt#*ttt###ttt#t##t
C:READ REENTRANT ROUTINE TO READ DECIMAL NUMBERS

CET 6/10/69

EACH NUMBER IN A USER'S FIELD IS CONVERTED TO A HEXADEC IMAL NUMBER .
DECLREAD CONVERTS TO LONG-FORMAT FLOAT ING POINT; INTGREAD CONVERTS

TO SHORT-FORMAT FIXED-POINT. EXAMPLES OF VALID INPUT DECIMAL NUM-

BERS ARE: Sy 055 5.9 #5, E5y E+5, +E+5, +05.E+5, AND BLANK (=0).

D MAY BE USED IN PLACE OF E. BLANK AFTER E OR D SIGNIFIES +.

AN INVALID CHARACTER OR COMBINATION CAUSES THAT NUMBER'S CONVERSION
TO BE ABORTED. THE END OF EACH USER NUMBER IS INDICATED BY A BLANK
OR EOM OR THE ENDING OF THE FIELD.

LARGEST NUMBER FOR INTGREAD IS 2147483640
LARGEST MANTISSA FOR DECLREAD IS 72057594037927935
LARGEST NUMBER FOR DECLREAD IS 7.2370E75
SMALLEST NUMBER FOR DECLREAD IS 5439 7TTE-T9

INPUT:
RO BAL
R1 FIELD ADDRESS (WORD)
R2 STARTING BYTE COUNT
R3 ENDING BYTE COUNT

QUTPUT:
R2 NEXT BYTE COUNT
R4,5 CONVERTED NUMBER FROM DECLREAD
R5 CONVERTED NUMBER FROM INTGREAD
R6 0 IF END OF FIELD IS BLANK

R7-11 ARE ALSO USED

CONDITION CODE:
0 NUMBER CONVERTED

1 INVALID FORMAT IN MANTISSA
2 INVALID CHARACTER IN MANTISSA
3 MANTISSA TOO LONG
4 INVALID FORMAT IN EXPONENT
5 INVALID CHARACTER IN EXPONENT
6 NUMBER TOG SMALL
7 NUMBER TOO LARGE
DEF DECLREAD, INTGREAD
LOCAL BIAS
DATA X'7F000000'
BOUND 8
DATA 0
IT DATA X*80000000"
F DATA XV IFFFFFFF"
BOUND 8
T DATA X'00000000*,x*0CCCCCCC!
L TEXT ' 0123456789"
DATA X'4E000000"
BOUND 8
DATA X140199999" ,X'9999999A"
DATA X'41A00000*,X*00000000"
T DATA X*00A00000*,X*00000000"
T DATA X' 7TF199999'yX'99999999"

20

TEN
DECLREAD

INTGREAD
CLEAR

SCAN1

EXIT1

SETEXP

NOBLANK

PASSNO

NEGCHECK

YESSIGN

DECCHECK

ECHECK

HUNT1

DECODE 1

DATA
LWes
B
LI 4
LI,y5
LI, 6
LI,7
LI,8
LI,9
LI, 10
CW,3
BCSy1
LBy1l1
Al,2
Clyl1
BCS,3
CI,7
BCR,3
Clqa7
BCS,y1
BCR,2
LI,6
LI,7

B
Cigll
BCR,3
CI,8
BCS,3
Cisl1
BCS,3
LI,8
LI,7
B
Clylil
BCS,3
LI,8

B
CIs10
BCS,3
Cl,yl1
BCS,3
LI,10
CI,7
BCS,3
LI,7
LI,8

B
Cl,11
BCR,3
Clyl1l
BCR,3
L1y
CB,11
BCR,3
BDR, 7
LCI

B
Al,7
LWs11

10
HIGHBIT
CLEAR

0

N—~OOOOO

EXITL
*’.'2

i

oo
NOBLANK
0

SCAN1

0

*0
SETEXP
1

0

PART3
X'08*
EXITL

0
YESSIGN
(e
NEGCHECK
1

=il
SCAN1L
=
DECCHECK
=1
PASSNO
1
ECHECK

ECHECK
0

0

SCAN1
=1}

1

SCAN1
IEI
PART2
IDI
PART2
10
DECTBL,7
DECODE1
HUNT1

2

*0
=

4

RESULT1; ENTRY FOR FLOATING-POINT

RESULT1; ENTRY FOR FIXED-POINT
RESULT2
H.O. DIGIT; PASS; DIGIT; BLANK FLAG
PASS; L.O. DIGIT; EXP

MSIGN

ESIGN

DEC

IS FIELD ENDED

END OF FIELD

TAKE BYTE FOR INTERPRETATION
INCREMENT BYTE COUNT

IS BYTE BLANK

[F NOT BLANK

IS PASS=0

IF PASS=0

IF PASS=-1, ABORT (CC=1)
IF PASS=0
BLANKFLAG

SET EXP=0

CHECK FOR EOM
IF EOM
IS MSIGN=0
IF SIGN EXISTS
IF NO PRIOR SIGN: CHECK FOR +
1F NOT +
{7
SIGN FOUND, NO DIGIT
TAKE ANOTHER BYTE
CHECK FOR -
IF NOT —
I

IS DEC=+1

IEste (EXISTS

CHECK FOR .

[F NOT .

1E

IS PSSS=0

IF PASS NOT ©

. FOUND, NO DIGIT
AS IF + FOUND

CHECK FOR E
IF E
CHECK FOR D
IF D
DIGIT INDEX
CHECK FOR DIGIT
IF DIGIT
IF NOT DIGIT
ERROR: INVALID MANTISSA CHARACTEK
ABORT :
DIGIT
HIGH-ORDER BITS OF RESULT

LOWMULT

INTG1

DECSHIFT

MSIGNCHK

PASSYES

PART2

SETMAN
NOPASS

SCAN2

EXIT2

GETBYTE

SUPPLUS

BCR,1
AND,11
MI,11
CWeS
BCR,y4
AND, 5
Al,11
Ml 4
AW, 4
ADy4
ORy4&
CWes
BCRy4
LCI

Ml &
AD.4
CDy4
BCSy1
Lcl

Cl,y10
BCRy3
AlI,10
Ci,s8
BCSy3
LI,8
LI,7
B

CI.7
BCRy3
Cle?
BCR,y3
CI,10
BCSy1
LIS
LIs6
LIs7
CWe3
BCRy1
Cls6
BCRy3
LCI

LByll
Als2

Cl,11
BCRy3
Cl,11
BCRy3
Cl¢9

BCSy3
Clell
BCS»3
LIy9

Cl,9
BCSy3
Lle9

INTGL
BITOFF
10
HIGHBIT
LOWMULT
BITOFF
5

10

11

6
HIGHBIT
FTABU
DECSHIFT
3

*0

10

6

ITABU
DECSHIFT
3

*0

1
MSIGNCHK
=%

0
PASSYES
1

1

SCAN1

1
NOPASS
0
SETMAN
1

*0

| |

0

0

2
GETBYTE
1

PART3

4

*0

*1,2

L

AR
SUPPLUS
x'o08"
EXIT2

0
DIGCHECK
LS
MINCHECK
1

SCAN2

0

EXIT2

1

IF INTEGER

REMOVE FLAG

HIGH-ORDER PRODUCT

SIGN FLAG

IF ABSENT

REMOVE FLAG

A*8

LOW-ORDER PRODUCT IN R4,R5
TOTAL PRODUCT IN R4,R5

PRODUCT DOUBLEWORD + DIGIT DOUBLEWORD

REPLACE FLOATING-POINT FLAG
IS HIGH BYTE EMPTY
IF EMPTY
ERROR: MANTISSA OVERFLOW
ABORT
PRODUCT IN R4,y5
PRODUCT + DIGIT
IS RESULT WITHIN LIMIT
IF WITHIN
ERROR: MANTISSA OVERFLOW
ABORT
DOES . EXIST
IF NO .
SHIFT .
IS MSIGN=0
IF SIGN EXISTS
AS IF + FOUND
DIGIT FOUND
(END PART ONE)
WAS DIGIT FOUND
IF DIGIT FOUND
IS MANTISSA BLANK
IF MANTISSA BLANK
WAS . FOUND
IF . FOUND, ABORT (cc=1)
SET MANTISSA=1
PASS
EXP
IS FIELD ENDED
IF FIELD NOT ENDED
WAS DIGIT FOUND
IF DIGIT IN EXPONENT
ERROR: INVALID EXPONENT FORMAT
ABORT
TAKE BYTE FOR INTERPRETATION
INCREMENT BYTE COUNT
1S BYTE BLANK
IF BLANK
CHECK FOR EOM
IF EOM
IS ESIGN=0
IF SIGN EXISTS
CHECK FOR +
IF NOT +
SET ESIGN=+

»

DOES ESIGN EXIST
IF ESIGN EXISTS

MAKE ESIGN + (BLANK = SUPPRESSED +)

21

22

MINCHECK

DIGCHECK
HUNT 2

DECODE2

PART3

DECNEG

DECORINT

NEGBLD

LLCHK

DIVTEN
POSEXP
POSBLD
MANNEG
DECLEND

ULCHK

MULTEN

INTG2

NEGBLDI

B
Clsll
BCS,3
LI,9
B
LI,6
CBy11
BCR,y3
BDRy6
LCI

B
Al,6
MI,7
AW, 7
LI,6
CI,9
BCS,3
L5
B
CI,9
BCR, 1
LCW,7
CI,10
BCR,1
AW, 7
CWy4
BCR, 4
AND, 4
ORy 4
SFLy4
Cl,y7
BCR,y1
Al,7
BIRy7
B
CDv4
BCRy1
ECT

B
FML,4
B
Al,7
BDR,7
CI,8
BCRy1
LCD,4
LCI

B
CDy4
BCR,2
LCI

B
FML,4

B
Cl,7
BCRy1
Al,7
BIR,7
B

SCAN2
-
DIGCHECK
=1

SCAN2

10
DECTBL,6
DECODE2
HUNT2

5

*0

=1

10

6

1

0
SCAN2
1
SCAN2
0
DECNEG
7

0
DECORINT
10
HIGHBIT
INTG2
BITOFF
BIAS
13

0
POSEXP
=il
LLCHK
MANNEG
LLIMIT
DIVTEN
6

*0
FPONE
NEGBLD
1

ULCHK
0
DECLEND
4

0

*0
ULIMIT
MULTEN
7

*0

FTEN
POSBLD
0
POSEXPI
=i
DIVTENI
INTNEG

EHECRKNEDRE=
IETNOT -
SET ESIGN=-

DIGIT INDEX

CHECK FOR DIGIT
[F DIGIT

IF NOT DIGIT
ERROR: INVALID EXPONENT CHARACTER
ABORT

DIGIT

EX RS0
EXPE+SDIGIT

SET PASS=1

IS ESIGN=0

IF SIGN EXISTS
SET ESIGN=1

(END OF PART TWO)
1S ESIGN —

IF NOT -

MAKIE SEXPS =

15 J0EC ™=

IF NOT -

ADJUST FOR DECIMAL SHIFT
FLOATING FLAG

IF INTEGER
REMOVE FLAG

BIAS = 64+14
NORMALIZE
ISHEXPE—

IF NOT -

FOR BIR

IS RESULT LESS THAN LOWER LIMIT
IF NOT

ERROR: NUMBER TOO SMALL

ABORT

DIVIDE RESULT BY TEN

RECYCLE

FOR BDR

CYCLE

IS MSIGN -

IF NOT -

MAKE NEGATIVE

NORMAL CC

NORMAL DECLREAD EXIT

IS RESULT GREATER THAN UPPER LIMIT
IF NOT

ERROR: NUMBER TOO LARGE

ABORT

MULTIPLY RESULT BY TEN

ISHEXPE=
IF NOT -
FOR BIR

DIVTENI

POSEXPI
POSBLDI

ULCHKI

MULTENI

INTNEG

INTGEND

DW,y5

Al L7
BDR,7

CDy4
BCRy2
LCI

Ml 4
CI.8
BCRy1
LCWs5
LCI

END

TEN
NEGBLDI
1
ULCHK I
INTNEG
ILIMIT
MULTENI
7

*0

10
POSBLDI

0
INTGEND
5

0

*0

23

FOR BDR

IS RESULT GREATER THAN LIMIT
IF NOT

ERROR: NUMBER TOO LARGE
ABORT

IS MSIGN -
IF NOT -

MAKE RESULT -

NORMAL CC

NORMAL INTGREAD EXIT

]T(T“Tf\f‘m i

